

Functional Programming and
Performance

Nicholas Chapman
Managing Director,

Glare Technologies Ltd
nick@indigorenderer.com

Is software performance important?

The importance of software
performance

● Power consumption in data centres:
● “US data centers consumed about 70 billion kilowatt-hours of

electricity in 2014, the most recent year examined,
representing 2 percent of the country’s total energy
consumption, according to the study. That’s equivalent to the
amount consumed by about 6.4 million average American
homes that year.” - http://www.datacenterknowledge.com/

The importance of software
performance (2)

● No one likes to wait for their software.
● Low performance software = lots of waiting.
● Better performing software is more popular.
● See e.g. Google's Chrome and their focus on performance. (Nice chapter

'High Performance Networking in Chrome' in 'The performance of Open
Source Applications')
http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.htm
l

http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.html
http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.html

Chrome market share domination –
in large part due to performance?

Our area – Computer graphics
Rendered with Indigo Renderer – probably took several hours to render.

Our area – computer graphics (2)

● Performance is crucial
● A single image may take hours to generate on a

fast modern computer.
● Customers like to see an image fast, they also

often have deadlines to produce renders by

The clock speed plateau

● Intel Pentium 4 – reached 3.06 GHz in 2002.
● My current computer in 2016: 3rd gen Intel Core i7

(Ivy Bridge) – hits 3.7 GHz.

● The free lunch of clock speed increases is definitely
over

● ‘The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software’ -
http://www.gotw.ca/publications/concurrency-ddj.htm

Overall performance is still
increasing though, just more slowly

● From http://preshing.com/20120208/a-look-
back-at-single-threaded-cpu-performance/

Improving performance approach 1:
Parallelism

● If we can split our work up and do multiple
tasks at once, we can get the work done
quicker.

● We need language/platform support for this
though.

Parallelism and functional
languages

● Lets compare to the handling of parallelism in
imperative languages

A function in maths

A function in a (pure) functional
programming language

A function/procedure/method in an
imperative language

Can we automatically parallelise this
for loop?

●

void doWork(const float* in,
float* out, size_t N)

{

 for(int i=0; i<N; ++i)

 out[i] = f(in[i]);

}

Can we automatically parallelise this
for loop? (2)

● We can only do so if iterations of the loop are
independent.

Information flow for the imperative
for loop

Applications of f can’t be separated due to entangling, due to possible access of global
state!

Information flow for the equivalent
functional program

Apples the function f to each element in the array ‘a’.

Manifest Parallelism

● Parallelism is manifest – obvious and directly
apparent – due to the language and notation
used.

Example of Winter auto-
parallelisation

● With auto-parallelisation disabled:
● Winter throughput: 0.169819 GiB/s
● C++ throughput: 0.563838 GiB/s
● (C++ is faster due to Visual C++ vectorising the pow call, and LLVM doesn’t)
● With auto-parallelisation enabled:
● Winter throughput: 0.793327 GiB/s
● C++ throughput: 0.552969 GiB/s
● Winter is 4.67x faster with auto-parallelisation enabled compared to without.

Part 1 Summary

● Functional programming languages exhibit
manifest parallelism

● Allows automatic parallelisation.
● Imperative functions get ‘entangled’ and can’t

be easily parallelised.

Part 2: Functional programming
languages and Garbage Collection

Quick review of Garbage
Collection(GC)

● Two main types of GC:
● Tracing (e.g. mark and sweep)
● Reference counting

Reference counting

● Is efficient
● No need to traverse over entire heap
● No need to ‘stop the world’
● But can’t collect cycles

How a cycle gets made in an
imperative language

Note that node a has to be modified after its creation.

Functional programming to the
rescue!

● By default, in a language with immutable
values, cycles cannot be formed.

● Have to explicitly add support for recursive
data, e.g. letrec in lisp.

Functional programming to the
rescue! (2)

● This means we can use a high performance GC
technique – reference counting – in our

functional language.

Even crazier forms of GC

● Compute a bound on the amount of memory
used by a function or program

● Allocate just that amount initially as an ‘arena’
● Free in one chunk when done.
● Use with reference counting

Even crazier forms of GC (2)

● Compute a bound on the sum of individual
allocations

● Allocate in one chunk
● Bump pointer in chunk for each alloc.
● No ref counting needed.
● Probably fastest possible memory management

(as long as total size bound is not too large)

Not all sunshine and lollipops

● The major performance issue for F.P. on von
Neumann architecture – slow to update single
element in large collection.

Example 1:

● Count frequency of elements (e.g. frequency of
byte values) in a large array.

● Described in ‘Let's Take a Trivial Problem and
Make it Hard’:
http://prog21.dadgum.com/41.html

● Actually a significant real world problem
(counting sort, radix sort)

http://prog21.dadgum.com/41.html

Example 2: quicksort

● Quicksort (partition sort) in imperative
languages is extremely fast, in large part due to
partitioning in place

● Not so much in functional languages.

Example Haskell quicksort, from https://wiki.haskell.org/Introduction

Example 2: quicksort (cont.)

● “[...] quicksort where Haskell’s elegant two-line
sort is over 1,000x slower than Sedgewick’s
Quicksort in C because the Haskell deep
copies lists over and over again, completely
blowing the asymptotic IO complexity of Hoare
original algorithm.” -
http://flyingfrogblog.blogspot.co.uk/2016/05/disa
dvantages-of-purely-functional.html

NOTE: Quite possibly an incorrect statement, but thought provoking at least!

Example 3: Conway’s game of life

● Potentially large world, with local updates.
● Lazy approaches for FP exist, but what is the

perf compared to imperative updates?

Future research

● Solving these perf weaknesses of FP is doable,
but tricky

● Possible to find brittle optimisations
● Difficult to make robust
● Hybrid solutions?

(FP by default, with some imperative sprinkled
in?)

Thanks!

● Questions?
● My blog: http://www.forwardscattering.org/

http://www.forwardscattering.org/

Activity

● Possible activity: write a fast byte frequency
counting function in your language of choice?

● See http://prog21.dadgum.com/41.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

